US009424311B2

a2z United States Patent (10) Patent No.: US 9,424,311 B2
Kundu 45) Date of Patent: Aug. 23,2016
(54) QUERY ROUTING BASED ON COMPLEXITY 2009/0106227 Al* 4/2009 Daviscccoeeu. G06Q 10/06
CLASS DETERMINATION 2010/0250519 Al* 9/2010 Fiebig GO6F 17/30935
707/718
H . ; : : 2011/0231428 Al 9/2011 Kuramura
(71) Applicant: International Business Machines 2011/0258179 Al* 10/2011 Weissman GOGF 17/30389
Corporation, Armonk, NY (US) 707/714
. 2013/0151491 Al* 6/2013 Gislason GOG6F 17/30339
(72) Inventor: Ashish Kundu, Elmsford, NY (US) 707/696
2013/0151504 Al* 6/2013 Konig GOGF 17/30424
(73) Assignee: International Business Machines 707/718
Corporation, Armonk, NY (US) 2014/0156636 Al* 6/2014 Bellamkonda GOG6F 17/30489
707/718
(*) Notice: Subject to any disclaimer, the term of this 2014/0280036 Al* 9/2014 Korlapati GOG6F 17/30463
patent is extended or adjusted under 35 707/718
U.S.C. 154(b) by 258 days. 2015/0293512 A1* 10/2015 Egge .oovoverr..... GOGF 17/5036
703/2
(21) Appl. No.: 14/220,172 * cited by examiner
(22) Filed: Mar. 20,2014
Pri Examiner — Wilson L
(65) Prior Publication Data rimary sxannner Hson tee)
(74) Attorney, Agent, or Firm — Yee & Associates, P.C.;
US 2015/0269224 A1l Sep. 24, 2015 Louis Percello
(51) Imt.ClL
GO6F 17/30 (2006.01) (57) ABSTRACT
(52) US.CL
CPC GO6F 17/30463 (2013.01); GOGF 17/30477 A computer implemented method, computer system, and
(2013.01) computer program product performs a query on a relational
(58) Field of Classification Search database. When a query is received, a corresponding com-
None plexity class is determined for the query. The query is routed
See application file for complete search history. to a corresponding query processor based on the correspond-
. ing complexity class determined for the submitted query. The
(56) References Cited query is executed on the corresponding query processor
U.S. PATENT DOCUMENTS according to a determined execution plan.
5,671,403 A 9/1997 Shekita et al.
5,778,364 A 7/1998 Nelson 15 Claims, 4 Drawing Sheets

310~ QP (COMPLEXITY |~ 320
CLIENT | P COMPLE
COMPLEXITY-AWARE
312 CLIENT ROUTING " | QP (COMPLEXITY | ~322
S CLASS Il)
316
31~ QP (COMPLEXITY |~324
Sl g “T™ cLassm
‘ S
' S A —
SYSTEM FOR
COMPLEXITY «—
318" DETERMINATION
A DATABASE
y
DYNAMIC 328
AND HISTORY R
INFORMATION: >
e
326 QUERIES

U.S. Patent Aug. 23,2016
100
\
—
104~
SERVER

106 |

SERVER

NETWORK

Sheet 1 of 4 US 9,424,311 B2

|/110

CLIENT

CLIENT

CLIENT

FIG. 3
310~ QP (COMPLEXITY |~ 320
CLIENT | P oL
COMPLEXITY-AWARE
312~ CLIENT | ROUTING | QP (COMPLEXITY |~ 322
~ || cLassi)
316
314 QP (COMPLEXITY |~ 324
il g “— 1| CLAsSIN)
‘ i
Y -
]
SYSTEM FOR
COMPLEXITY - »
318-"| DETERMINATION
i DATABASE
Y
DYNAMIC 328
AND HISTORY -
INFORMATION: >
]
326 QUERIES L

U.S. Patent Aug. 23,2016 Sheet 2 of 4 US 9,424,311 B2

S
DATA PROCESSING SYSTEM
216 206 STORAGE DEVICES 208
20\4 AN /
PERSISTENT
MEMORY STORAGE
PROCESSOR UNIT
@ 20\2
< >
210 212 @ 214
N / /
COMMUNICATIONS INPUT/OQUTPUT
UNIT UNIT DISPLAY

i

220 COMPUTER PROGRAM
\ PRODUCT

COMPUTER READABLE MEDIA
PROGRAM CODE

(
218

COMPUTER READABLE
STORAGE MEDIA

(226
299 Vad 224 /

COMPUTER READABLE
SIGNAL MEDIA

FIG. 2

U.S. Patent Aug. 23,2016 Sheet 3 of 4 US 9,424,311 B2

410~ RECEIVING A QUERY FROM A CLIENT

420

DETERMINES
WHETHER A SIMILAR

OR IDENTICAL QUERY HAS NO

BEEN RECENTLY Y
RECEIVED? DETERMINES THE
COMPLEXITY CLASS FOR |~ 440
THE SUBMITTED QUERY

RETRIEVES THE RESULTS FROM

430~ DYNAMIC AND HISTORY INFORMATION
RATHER THAN PARSING AND

EXECUTING THE STATEMENT AGAIN

\
ROUTES IN THE QUERY TO A
CORRESPONDING QUERY
450 PROCESSOR, BASED ON THE
DETERMINED COMPLEXITY CLASS

!

EXECUTES THE QUERY ON
THE CORRESPONDING QUERY
460" PROCESSOR ACCORDING TO
THE EXECUTION PLAN

v

STORES THE RESULTS FROM DYNAMIC
470 AND HISTORY INFORMATION 326

FIG. 4

U.S. Patent

Aug. 23, 2016

Sheet 4 of 4

(_ START)

Y

510~

RECEIVE A QUERY FOR A GRAPH
DATABASE FROM A QUERIER

Y

520~

DETERMINES THE STATIC
COMPLEXITY CLASS OF THE
QUERY FOR THAT SPECIFIC

GRAPH DATABASE OR DATABASES

Y

530~

DETERMINES THE DYNAMIC
COMPLEXITY CLASS

Y

940~

DECOMPOSE THE QUERY INTO
SUBQUERIES AND DEVISE A
QUERY PLAN BASED ON
DYNAMIC COMPLEXITIES AND
THE ALGORITHMS AVAILABLE

A

550]

EMPLOYS A COMPLEXITY-
BASED ROUTING OF
QUERIES AND SUBQUERIES

Y

560"

ROUTES THE QUERY OR
SUBQUERIES TO THE RESPECTIVE
QUERY PROCESSING ENGINES

A

570"

ASKS THE QUERIERTO
CONFIRM PROCESSING THE
QUERY, OR CANCEL, OR
POSTPONE QUERY PROCESSING

Y

580"

RETURNS THE RESULTS

A

(enp)
FIG. 5

US 9,424,311 B2

US 9,424,311 B2

1

QUERY ROUTING BASED ON COMPLEXITY
CLASS DETERMINATION

BACKGROUND

1. Field

The disclosure relates generally to a computer imple-
mented method, a data processing system, and a computer
program product for query processing in a relational data-
base. More specifically, the disclosure relates to a computer
implemented method, a data processing system, and a com-
puter program product for query routing among a plurality of
query processors based on a determined complexity class of
the query.

2. Description of the Related Art

Databases are used to store information for an innumerable
number of applications, including various commercial,
industrial, technical, scientific, and educational applications.
As the reliance on information increases, both the volume of
information stored in most databases, as well as the number of
users wishing to access that information, likewise increases.
Moreover, as the volume of information in a database, and the
number of users wishing to access the database, increases, the
amount of computing resources required to manage such a
database increases as well.

Database management systems (DBMS’s), which are the
computer programs that are used to access the information
stored in databases, therefore often require tremendous
resources to handle the heavy workloads placed on such
systems. As such, significant resources have been devoted to
increasing the performance of database management systems
with respect to processing searches, or queries, to databases.

Improvements to both computer hardware and software
have improved the capacities of conventional database man-
agement systems. For example, in the hardware realm,
increases in microprocessor performance, coupled with
improved memory management systems, have improved the
number of queries that a particular microprocessor can per-
form in a given unit of time. Furthermore, the use of multiple
microprocessors and/or multiple networked computers has
further increased the capacities of many database manage-
ment systems.

From a software standpoint, the use of relational databases,
which organize information into formally-defined tables con-
sisting of rows and columns, and which are typically accessed
using a standardized language such as Structured Query Lan-
guage (SQL), has substantially improved processing effi-
ciency, as well as substantially simplified the creation, orga-
nization, and extension of information within a database.

In a publish-subscribe model, database queries typically
return only a subset of the total database entries. The process
of selecting messages for reception and processing is called
filtering. Database entries are only returned if the attributes or
content of those entries match constraints defined by the user
in the query. Significant development efforts have been
directed toward query optimization, whereby the execution of
particular searches, or queries, is optimized in an automated
manner to minimize the amount of resources required to
execute each query.

Through the incorporation of various hardware and soft-
ware improvements, many high performance database man-
agement systems are able to handle hundreds or even thou-
sands of queries each second, even on databases containing
millions or billions of records. However, further increases in
information volume and workload are inevitable, so contin-
ued advancements in database management systems are still
required.

10

15

20

25

30

35

40

45

50

55

60

65

2

One area that has been a fertile area for academic and
corporate research is that of improving the designs of the
query optimizers utilized in many conventional database
management systems. The primary task of a query optimizer
is to choose the most efficient way to execute each database
query, or request, passed to the database management system
by a user. The output of an optimization process is typically
referred to as an “execution plan,” “access plan,” or just
“plan” and is frequently depicted as a tree graph. Such a plan
typically incorporates (often in a proprietary form unique to
each optimizer/DBMS) low-level information telling the
database engine that ultimately handles a query precisely
what steps to take (and in what order) to execute the query.
Also typically associated with each generated plan is an opti-
mizer’s estimate of how long it will take to run the query using
that plan.

An optimizer’s job is often necessary and difficult because
of'the enormous number (i.e., “countably infinite” number) of
possible query forms that can be generated in a database
management system, e.g., due to factors such as the use of
SQL queries with any number of relational tables made up of
countless data columns of various types, the theoretically
infinite number of methods of accessing the actual data
records from each table referenced (e.g., using an index, a
hashtable, etc.), and the possible combinations of those meth-
ods of access among all the tables referenced, etc. An opti-
mizer is often permitted to rewrite a query (or portion of it)
into any equivalent form, and since for any given query there
are typically many equivalent forms, an optimizer has a
countably infinite universe of extremely diverse possible
solutions (plans) to consider. On the other hand, an optimizer
is often required to use minimal system resources given the
desirability for high throughput. As such, an optimizer often
has only a limited amount of time to pare the search space of
possible execution plans down to an optimal plan for a par-
ticular query.

Another automated tool that is a part of many database
management systems is a database monitor. It is used to
gather performance statistics related to SQL queries run
within the database management system. The data collected
by the database monitor is typically collected in a database
file itself where it can be queried by a trained user to help
identify and tune performance problem areas. A database
monitor typically tracks the name of a query, the name of the
tables accessed by the query, the indices used by the query (if
any), the join parameters of the query, and other pertinent
information such as the duration of time the query took to
complete. The performance statistics collected by a database
monitor are typically large in volume and require a knowl-
edgeable SQL administrator to interpret and use.

Typical query optimizers store information about previ-
ously encountered queries and the access plans that were
created for such queries. When a previous query is once again
encountered, these optimizers use previous access plans to
avoid the time and cost of re-creating an access plan regard-
less of how the earlier access plan performed.

Federated query optimizers often deploy cost-based query
optimization mechanisms. Specifically, these optimizers can
determine multiple global query execution plans and, then,
select the execution plan with the lowest execution cost. Thus,
cost functions indirectly influence what remote sources are
accessed to retrieve data and how federated queries are pro-
cessed.

SUMMARY

According to an illustrative embodiment of the present
invention, a computer implemented method is provided to

US 9,424,311 B2

3

determine a query execution plan for a given query using
Dynamic complexity of graph problems. The computer
implemented method makes a determination of subqueries
and which algorithms to be used to evaluate them. A publish/
subscribe system is used to process subqueries by routing
subqueries to the respective query processing engines based
on complexity of the subquery. The computer implemented
method then uses a correctness estimate, probability of ter-
mination of query processing, and size of query result,
towards determining the query plan to determine whether the
query should be executed. The computer implemented
method can then ask the user whether to continue with query
processing after providing information about “correctness
estimate,” probability of termination of query processing, and
size of query result, towards determining the query plan. The
computer implemented method thus provides distributed
query processing for graph databases based on complexity of
subqueries.

According to an illustrative embodiment of the present
invention, a computer program product on a computer read-
able storage medium is provided to determine a query execu-
tion plan for a given query using Dynamic complexity of
graph problems. The computer program product includes
instructions to make a determination of subqueries and which
algorithms to be used to evaluate them. A publish/subscribe
system is used to process subqueries by routing subqueries to
the respective query processing engines based on complexity
of the subquery. The computer program product includes
instructions to use a correctness estimate, probability of ter-
mination of query processing, and size of query result,
towards determining the query plan to determine whether the
query should be executed. The computer program product
includes instructions to ask the user whether to continue with
query processing after providing information about “correct-
ness estimate,” probability of termination of query process-
ing, and size of query result, towards determining the query
plan. The computer program product thus provides distrib-
uted query processing for graph databases based on complex-
ity of subqueries.

According to an illustrative embodiment of the present
invention, a computer system is provided for determining a
query execution plan for a given query using Dynamic com-
plexity of graph problems. The computer system includes
storage having a computer program product stored thereon, a
bus system, and at least one processor. When the computer
program product is executed by the processor, the computer
system makes a determination of subqueries and which algo-
rithms to be used to evaluate them. A publish/subscribe sys-
tem is used to process subqueries by routing subqueries to the
respective query processing engines based on complexity of
the subquery. The computer system then uses a correctness
estimate, probability of termination of query processing, and
size of query result, towards determining the query plan to
determine whether the query should be executed. The com-
puter system can then ask the user whether to continue with
query processing after providing information about “correct-
ness estimate”, probability of termination of query process-
ing, and size of query result, towards determining the query
plan. The computer system thus provides distributed query
processing for graph databases based on complexity of sub-
queries.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is an illustrative diagram of a data processing envi-
ronment in which illustrative embodiments may be imple-
mented;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 is an illustration of a data processing system
depicted in accordance with an illustrative embodiment;

FIG. 3 is a query processing system shown in accordance
with an illustrative embodiment;

FIG. 4 is a flowchart of a process for performing a query on
a relational database shown according to an illustrative
embodiment; and

FIG. 5 is a process for routing queries according to a
determined complexity class shown according to an illustra-
tive embodiment.

DETAILED DESCRIPTION

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium(s)
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer

US 9,424,311 B2

5

through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

With reference now to the figures and, in particular, with
reference to FIG. 1, an illustrative diagram of a data process-
ing environment is provided in which illustrative embodi-
ments may be implemented. It should be appreciated that
FIG. 1 is only provided as an illustration of one implementa-
tion and is not intended to imply any limitation with regard to
the environments in which different embodiments may be
implemented. Many modifications to the depicted environ-
ments may be made.

FIG. 1 depicts a pictorial representation of a network of
data processing systems in which illustrative embodiments
may be implemented. Network data processing system 100 is
anetwork of computers in which the illustrative embodiments
may be implemented. Network data processing system 100
contains network 102, which is the medium used to provide
communications links between various devices and comput-
ers connected together within network data processing sys-
tem 100. Network 102 may include connections, such as wire,
wireless communication links, or fiber optic cables.

In the depicted example, server computer 104 and server
computer 106 connect to network 102 along with storage unit
108. In addition, client computers 110, 112, and 114 connect
to network 102. Client computers 110, 112, and 114 may be,
for example, personal computers or network computers. In
the depicted example, server computer 104 provides infor-
mation, such as boot files, operating system images, and
applications to client computers 110, 112, and 114. Client
computers 110, 112, and 114 are clients to server computer

20

40

45

6

104 in this example. Network data processing system 100
may include additional server computers, client computers,
and other devices not shown.

Program code located in network data processing system
100 may be stored on a computer recordable storage medium
and downloaded to a data processing system or other device
for use. For example, program code may be stored on a
computer recordable storage medium on server computer 104
and downloaded to client computer 110 over network 102 for
use on client computer 110.

In the depicted example, network data processing system
100 is the Internet with network 102 representing a world-
wide collection of networks and gateways that use the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) suite of
protocols to communicate with one another. At the heart of
the Internet is a backbone of high-speed data communication
lines between major nodes or host computers consisting of
thousands of commercial, governmental, educational, and
other computer systems that route data and messages. Of
course, network data processing system 100 also may be
implemented as a number of different types of networks, such
as, for example, an intranet, a local area network (LAN), or a
wide area network (WAN). FIG. 1 is intended as an example,
and not as an architectural limitation for the different illus-
trative embodiments.

Turning now to FIG. 2, an illustration of a data processing
system is depicted in accordance with an illustrative embodi-
ment. Data processing system 200 may be used to implement
a query processing system with a relational database, such as
relational database 300 of FIG. 3. In this illustrative example,
data processing system 200 includes communications frame-
work 202, which provides communications between proces-
sor unit 204, memory 206, persistent storage 208, communi-
cations unit 210, input/output (1/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for soft-
ware that may be loaded into memory 206. Processor unit 204
may be a number of processors, a multi-processor core, or
some other type of processor, depending on the particular
implementation. A number, as used herein with reference to
an item, means one or more items. Further, processorunit 204
may be implemented using a number of heterogeneous pro-
cessor systems in which a main processor is present with
secondary processors on a single chip. As another illustrative
example, processor unit 204 may be a symmetric multi-pro-
cessor system containing multiple processors of the same
type.

Memory 206 and persistent storage 208 are examples of
storage devices 216. A storage device is any piece of hardware
that is capable of storing information, such as, for example,
without limitation, data, program code in functional form,
and/or other suitable information either on a temporary basis
and/or a permanent basis. Storage devices 216 may also be
referred to as computer readable storage devices in these
examples. Memory 206, in these examples, may be, for
example, a random access memory or any other suitable
volatile or non-volatile storage device. Persistent storage 208
may take various forms, depending on the particular imple-
mentation.

For example, persistent storage 208 may contain one or
more components or devices. For example, persistent storage
208 may be a hard drive, a flash memory, a rewritable optical
disk, a rewritable magnetic tape, or some combination of the
above. The media used by persistent storage 208 also may be
removable. For example, a removable hard drive may be used
for persistent storage 208.

Communications unit 210, in these examples, provides for
communications with other data processing systems or

US 9,424,311 B2

7

devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either, or both,
physical and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard, a mouse,
and/or some other suitable input device. Further, input/output
unit 212 may send output to a printer. Display 214 provides a
mechanism to display information to a user.

Instructions for the operating system, applications, and/or
programs may be located in storage devices 216, which are in
communication with processor unit 204 through communi-
cations framework 202. In these illustrative examples, the
instructions are in a functional form on persistent storage 208.
These instructions may be loaded into memory 206 for execu-
tion by processor unit 204. The processes of the different
embodiments may be performed by processor unit 204 using
computer implemented instructions, which may be located in
a memory, such as memory 206.

These instructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and executed by a processor in proces-
sor unit 204. The program code in the different embodiments
may be embodied on different physical or computer readable
storage media, such as memory 206 or persistent storage 208.

Program code 218 is located in a functional form on com-
puter readable media 220 that is selectively removable and
may be loaded onto or transferred to data processing system
200 for execution by processor unit 204. Program code 218
and computer readable media 220 form computer program
product 222 in these examples. In one example, computer
readable media 220 may be computer readable storage media
224 or computer readable signal media 226. Computer read-
able storage media 224 may include, for example, an optical
or magnetic disk that is inserted or placed into a drive or other
device that is part of persistent storage 208 for transfer onto a
storage device, such as a hard drive, that is part of persistent
storage 208. Computer readable storage media 224 also may
take the form of a persistent storage, such as a hard drive, a
thumb drive, or a flash memory, that is connected to data
processing system 200. In some instances, computer readable
storage media 224 may not be removable from data process-
ing system 200. In these examples, computer readable storage
media 224 is a physical or tangible storage device used to
store program code 218 rather than a medium that propagates
or transmits program code 218. Computer readable storage
media 224 is also referred to as a computer readable tangible
storage device or a computer readable physical storage
device. In other words, computer readable storage media 224
is a media that can be touched by a person.

Alternatively, program code 218 may be transferred to data
processing system 200 using computer readable signal media
226. Computer readable signal media 226 may be, for
example, a propagated data signal containing program code
218. For example, computer readable signal media 226 may
be an electromagnetic signal, an optical signal, and/or any
other suitable type of signal. These signals may be transmit-
ted over communications links, such as wireless communi-
cations links, optical fiber cable, coaxial cable, a wire, and/or
any other suitable type of communications link. In other
words, the communications link and/or the connection may
be physical or wireless in the illustrative examples.

In some illustrative embodiments, program code 218 may
be downloaded over a network to persistent storage 208 from
another device or data processing system through computer

10

15

20

25

30

35

40

45

50

55

60

65

8

readable signal media 226 for use within data processing
system 200. For instance, program code stored in a computer
readable storage medium in a server data processing system
may be downloaded over a network from the server to data
processing system 200. The data processing system providing
program code 218 may be a server computer, a client com-
puter, or some other device capable of storing and transmit-
ting program code 218.

The different components illustrated for data processing
system 200 are not meant to provide architectural limitations
to the manner in which different embodiments may be imple-
mented. The different illustrative embodiments may be
implemented in a data processing system including compo-
nents in addition to or in place of those illustrated for data
processing system 200. Other components shown in FIG. 2
can be varied from the illustrative examples shown. The dif-
ferent embodiments may be implemented using any hardware
device or system capable of running program code. As one
example, the data processing system may include organic
components integrated with inorganic components and/or
may be comprised entirely of organic components excluding
a human being. For example, a storage device may be com-
prised of an organic semiconductor.

In another illustrative example, processor unit 204 may
take the form of a hardware unit that has circuits that are
manufactured or configured for a particular use. This type of
hardware may perform operations without needing program
code to be loaded into a memory from a storage device to be
configured to perform the operations.

For example, when processor unit 204 takes the form of a
hardware unit, processor unit 204 may be a circuit system, an
application specific integrated circuit (ASIC), a program-
mable logic device, or some other suitable type of hardware
configured to perform a number of operations. With a pro-
grammable logic device, the device is configured to perform
the number of operations. The device may be reconfigured at
a later time or may be permanently configured to perform the
number of operations. Examples of programmable logic
devices include, for example, a programmable logic array, a
programmable array logic, a field programmable logic array,
a field programmable gate array, and other suitable hardware
devices. With this type of implementation, program code 218
may be omitted because the processes for the different
embodiments are implemented in a hardware unit.

In still another illustrative example, processor unit 204 may
be implemented using a combination of processors found in
computers and hardware units. Processor unit 204 may have
a number of hardware units and a number of processors that
are configured to run program code 218. With this depicted
example, some of the processes may be implemented in the
number of hardware units, while other processes may be
implemented in the number of processors.

In another example, a bus system may be used to imple-
ment communications framework 202 and may be comprised
of'one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system.

Additionally, a communications unit may include a num-
ber of more devices that transmit data, receive data, or trans-
mit and receive data. A communications unit may be, for
example, a modem or a network adapter, two network adapt-
ers, or some combination thereof. Further, a memory may be,
for example, memory 206, or a cache, such as that which is
found in an interface and memory controller hub that may be
present in communications framework 202.

US 9,424,311 B2

9

Tlustrative embodiments of the present invention provide a
computer implemented method, computer system, and com-
puter program product for performing a query on a relational
database. When a query is received, a corresponding com-
plexity class is determined for the query. The query is routed
to a corresponding query processor based on the correspond-
ing complexity class determined for the submitted query. The
query is executed on the corresponding query processor
according to a determined execution plan.

Referring now to FIG. 3, a query processing system is
shown in accordance with an illustrative embodiment. Query
processing system 300 can be executed on a data processing
system, such as data processing system 200 of FIG. 2.

Query processing system 300 includes client 310, client
312, and client 314. Each of client 310, client 312, and client
314 is a client such as one of client computers 110, 112, and
114 of FIG. 1.

Complexity aware routing 316 is a software component
that receives queries from client 310, client 312, or client 314,
and routes those queries to one of a plurality of query proces-
sors. Complexity aware routing 316 performs query optimi-
zation on queries received from client 310, client 312, and
client 314. Query optimization is the process of choosing the
fastest execution plan. In the optimization phase, the query
processor chooses:

Which, if any, indexes to use;

The order in which joins are executed;

The order in which constraints such as WHERE clauses are
applied; and

Which algorithms are likely to lead to the best perfor-
mance, based on cost information derived from statistics.

That is, query optimization, in part, determines the com-
plexity class for the submitted query.

A cost-based query optimizer chooses among alternative
plans to answer an SQL query. Selection is based on cost
estimates for different plans. The factors in making cost esti-
mates include the number of 1/O operations, the amount of
CPU time, and so on. A cost-based query optimizer estimates
these costs by keeping statistics about the number and com-
position of records in a table or index and is not dependent on
the exact syntax of the query or the order of clauses within the
query (unlike a syntax-based query optimizer).

In determining to which of the query processors the query
should be routed, complexity aware routing 316 takes into
account the complexity class for the query. System for com-
plexity determination 318 is a software component for deter-
mining the complexity class of queries submitted to query
processing system 300.

Typically, a complexity class is defined by (1) a model of
computation, (2) a resource (or collection of resources), and
(3) a function known as the complexity bound for each
resource. The models used to define complexity classes fall
into two main categories: (a) machine based models, such as
Turning machines, and (b) circuit-based models.

The following are examples of the more common complex-
ity classes:

The polynomial time complexity class contains all deci-
sion problems that can be solved by a deterministic Turing
machine using a polynomial amount of computation time, or
polynomial time. The Polynomial time complexity class is
represented by the formula:

P=DTime[n?V]=U,_,DTime["]

Wherein:
DTime[t(n)] is the class of decision problems decided by a
deterministic Turing machine of time complexity t(n).

10

15

20

25

30

35

40

45

50

55

60

65

10

The nondeterministic polynomial time complexity class
contains all decision problems for which the instances where
the answer is “yes” have efficiently verifiable proofs of the
fact that the answer is indeed “yes.” More precisely, these
proofs have to be verifiable in polynomial time by a deter-
ministic Turing machine. The nondeterministic polynomial
time complexity class is represented by the formula:

NP=NTime[#?V]=U,_, NTime[#"]

As asubset of The nondeterministic polynomial time com-
plexity class, Non-deterministic Polynomial-time hard (NP-
hard), is a class of problems that are, informally, “at least as
hard as the hardest problems in NP’ A problem His NP-hard
if, and only if, there is an NP-complete problem L that is
polynomial time Turing-reducible to H (i.e., L= H). In other
words, [can be solved in polynomial time by an oracle
machine with an oracle for H.

The exponential time complexity class contains all deci-
sion problems solvable by a deterministic Turing machine in
022" time, where p(n) is a polynomial function of n. The
exponential time complexity class is represented by the for-
mula:

. o). . k.
EXP=DTime[2"""]=U,.,DTime[2"]

The nondeterministic exponential time complexity class
contains all decision problems that can be solved by a non-
deterministic Turing machine using time O(2?%”) for some
polynomial p(n), and unlimited space. The nondeterministic
exponential time complexity class is represented by the for-
mula:

2n0(1)

EXP-NTime[2" " |~U, NTime[2"]

Complexity aware routing 316 takes into account both
static complexity and Dynamic complexity when routing the
query to an appropriate query processor. Static complexity is
the complexity inherent to the query based on the complexity
of'the queried databases. The complexity of the queried data-
bases can in turn be based on the types of graphs in the
database, such as, for example, but not limited to, a tree, a
directed acyclic graph (DAG), cyclic graphs, and planar
graphs. The complexity of the queried databases can also
depend on whether the database has been updated.

In one illustrative embodiment, static query complexity
also depends on what kinds of statements are used in the
subqueries into which the query is decomposed. For example,
for a sequence of statements such as:

statement 1;

statement 2;

statement k;

The total time is found by adding the times for all state-
ments. If each statement involves only basic operations, then
the time for each statement is constant. Query complexity for
such a statement is polynomial.

In one illustrative embodiment, the subqueries can include
if-then-else statements such as the following:

if (condition) {
sequence of statements 1

else {
sequence of statements 2

}

In such embodiments, either sequence 1 will execute, or
sequence 2 will execute. If each sequence involves only basic
operations, then the time for each sequence is constant. Query

US 9,424,311 B2

11

complexity for such a statement is polynomial. However, if
one or more of the sequences involve non-basic operations,
the worst-case time is the slowest of the two possibilities:
max(time(sequence 1), time(sequence 2)). This worst-case
scenario may include nondeterministic polynomial, or expo-
nential complexities.

In one illustrative embodiment, the subqueries can include
for-loop statements such as the following:

for (i=0; i <Nji++) {
sequence of statements

}

The loop executes N times, so the sequence of statements
also executes N times. If each sequence involves only basic
operations, Query complexity for such a statement is polyno-
mial.

In one illustrative embodiment, the subqueries can include
nested for-loop statements such as the following:

for (i=0; i <Nji++) {
for (=05 j <M j++) {
sequence of statements
¥
¥

The outer loop executes N times. For each time the outer
loop executes, the inner loop executes M times. As a result,
the statements in the inner loop execute a total of N*M times.
Thus, the complexity is O(N*M). In a common special case
where the stopping condition of the inner loop is j<N instead
of j<M (i.e., the inner loop also executes N times), the total
complexity for the two loops is O(N?), or nondeterministic
polynomial time complexity class.

Dynamic query complexity alters the static query com-
plexity based on other queries processed earlier, being pro-
cessed or to be processed concurrently or ahead of this current
query. For example, if an identical statement has been
received earlier, the server retrieves the results from that
query rather than parsing and executing the statement again.
In one illustrative embodiment, query results are shared
among sessions, so a result set generated by one client, such
as client 310, can be sent in response to the same query issued
by another client, such as client 312.

Query optimization is the process of choosing the fastest
execution plan. In the optimization phase, the query processor
chooses, for example:

which, if any, indices to use;

the order in which joins are executed;

the order in which constraints such as WHERE clauses are
applied; and

which algorithms are likely to lead to the best performance,
based on cost information derived from statistics.

That is, query optimization in part determines the complex-
ity class for the submitted query.

Query execution is the process of executing the plan cho-
sen during query optimization. The query execution compo-
nent also determines the techniques available to the query
optimizer. For example, SQL Server implements a hash join
algorithm and a merge join algorithm, both of which are
available to the query optimizer. The objective is to execute
the plan quickly by returning the answer to the user (or more
often, the program run by the user) in the least amount of time.
This is not the same as executing the plan with the fewest
resources (CPU, 1/O, and memory). For example, a parallel

10

15

20

25

30

35

40

45

50

55

60

65

12

query almost always uses more resources than a nonparallel
query, but it is often desirable because it returns the result
more quickly.

Query execution is presented before query optimization
because the set of available execution techniques determines
the set of choices available to the optimizer. The techniques
include disk I/O, sorting, join and hash operations, index
intersections, index joins, and parallelism.

Query processor 320 is a query processor that performs
query execution for a given complexity class. For example,
query processor 320 may execute queries that are determined
by System for complexity determination 318 to be of a class
polynomial time (P).

Query processor 322 is a query processor that performs
query execution for a given complexity class. For example,
query processor 322 may execute queries that are determined
by System for complexity determination 318 to be of a class
non-deterministic polynomial time (NP).

Query processor 324 is a query processor that performs
query execution for a given complexity class. For example,
query processor 324 may execute queries that are determined
by System for complexity determination 318 to be of a class
non-deterministic polynomial hard time (NP-hard).

Dynamic and history information 326 is a data store con-
taining saved history of search queries. The syntax of
research, as well as any determination of the complexity
class, can be retrieved for future searches and complexity
determinations.

Dynamic and history information 326 provides a general
record of operations performed by the relational database
300. Database 328 writes information to Dynamic and history
information 326 when one of clients 310, 312, or 314 con-
nects or disconnects. Dynamic and history information 326
logs each query statement received from clients 310, 312, and
314. If an identical statement is received later, the server
retrieves the results from Dynamic and history information
326 rather than parsing and executing the statement again. In
one illustrative embodiment, Dynamic and history informa-
tion 326 is shared among sessions, so aresult set generated by
one client, such as client 310, can be sent in response to the
same query issued by another client, such as client 312.

Database 328 comprises a storage engine that writes data to
and reads data from the disk. Database 328 manages records,
controls concurrency, and maintains log files.

Referring now to FIG. 4, a flowchart of a process for
performing a query on a relational database is shown accord-
ing to an illustrative embodiment. Process 400 is a software
process executing on one or more software components of a
relational database, such as relational database 300 of FIG. 3.

Process 400 begins by receiving a query from a client (step
410). The client can be, for example one of client 310, client
312, or client 314 of FIG. 1.

Responsive to receiving a query, process 400 determines
whether a similar or identical query has been recently
received (step 420). Process 400 determines whether a similar
or identical query has been received by examining Dynamic
and history information, such as Dynamic and history infor-
mation 326 of FIG. 3. Dynamic and history information pro-
vides a general record of operations performed by the rela-
tional database 300. Database 328 writes information to
Dynamic and history information 326 when one of client 310,
client 312, or client 314 connects or disconnects. Dynamic
and history information 326 logs each query statement
received from client 310, client 312, and client 314. Respon-
sive to a similar or identical query having been recently
received (“yes” at step 420), process 400 retrieves the results
from Dynamic and history information 326 rather than pars-

US 9,424,311 B2

13

ing and executing the statement again (step 430). In one
illustrative embodiment, Dynamic and history information
326 is shared among sessions, so a result set generated by one
client, such as client 310, can be sent in response to the same
query issued by another client, such as client 312.

Responsive to a similar or identical query not having been
recently received (“no” at step 420), process 400 determines
the complexity class for the submitted query (step 440). As
discussed above, the complexity class of the submitted query
can be determined in part based on the query optimization.

Process 400 routes the query to a corresponding query
processor based on the determined complexity class (step
450). The query processors can be, for example one of query
processor 320, query processor 322, or query processor 324
of FIG. 3.

Process 400 executes the query on the corresponding query
processor according to the execution plan (step 460). Process
400 stores the results from Dynamic and history information
326 (step 470), with the process terminating thereafter. In one
illustrative embodiment, Dynamic and history information
326 is shared among sessions, so a result set generated by one
client, such as client 310, can be sent in response to the same
query issued by another client, such as client 312.

Referring now to FIG. 5, a process for routing queries
according to a determined complexity class is shown accord-
ing to an illustrative embodiment. Process 500 is a software
process executing on software components of a relational
database system, such as relational database 300 of FIG. 3.

Process 500 begins by receiving a query for a graph data-
base from a querier (step 510). The querier can be, for
example one of client 310, client 312, or client 314 of FIG. 3.

Responsive to receiving the query, process 500 determines
the static complexity class of the query for that specific graph
database or databases (step 520). Static complexity is the
complexity inherent to the query based on the complexity of
the queried databases. The complexity of the queried data-
bases can in turn be based on the types of graphs in the
database, such as, for example, but not limited to, a tree, a
directed acyclic graph (DAG), cyclic graphs, and planar
graphs.

Responsive to determining the static complexity class for
the query, process 500 determines the Dynamic complexity
class (step 530). The Dynamic complexity class of the query
can be based on the static complexity, other queries processed
earlier, being processed, or to be processed concurrently or
ahead of the query.

Responsive to determining Dynamic complexity for the
query, process 500 decomposes the query into subqueries and
devises a query plan based on Dynamic complexities and the
algorithms available (step 540). The query is decomposed
into subqueries such that some of the subqueries are solvable
in polynomial time, and the other ones may not be solvable in
polynomial time. The query is decomposed with a goal to
optimize some or all the following criteria:

time taken to process the query and send a result;

size of the result;

how correct the result is (0 to 1);

what is the probability that the query would at all be pro-
cessed by the server within the required time; and

what is the probability that the query would not be termi-
nated before it is completely processed.

As part of devising the query plan, process 500 estimates
complexities of the subqueries and query from the complexity
databases. In an illustrative embodiment, process 500 can
estimate the complexities of the subqueries based on the types

10

15

20

25

30

35

40

45

50

55

60

65

14

of graphs in the database tree, such as for example, DAG,
cyclic graphs, planar graphs, and whether the database has
been updated

If the database has been updated such that the number of
graphs, size of graphs, properties of graphs have changed,
process 500 then evaluates how such changes affect the com-
plexity ofthe query. If the complexity of the query is affected,
then re-decompose subqueries.

Optionally, the decomposer determines if a similar query
has been received within a predetermined period of time. If
yes, then if there has been less than a predetermined number
of' updates to the database within delta 1 time period and the
processing of the query or some subqueries has been com-
pleted, process 500 can re-use those results. If no decompo-
sition is carried out within the predetermined time or the
databases have been updated more than the predetermined
amount, process 500 can continue decomposition and pro-
cessing.

As part of determining the available algorithms, process
500 determines the algorithms from a database of algorithms.
In one illustrative embodiment, process 500 makes this deter-
mination based on the subquery the algorithm solve, whether
the algorithm’s implementation in the database system sup-
ports certain correctness estimates, an estimate of probability
of completion of the subquery, whether concurrent process-
ing of the algorithm is allowed, whether the algorithm sup-
ports incremental evaluation of queries (on incremental
changes), and whether the algorithm offers an optimal solu-
tion.

Process 500 then employs a complexity-based routing of
queries and subqueries (step 550), utilizing complexity of a
subquery in the routing parameter.

Process 500 routes the query or subqueries to the respective
query processing engines (step 560). The respective query
processing engines implement the algorithms based on how
much time the subquery is estimated to take, and other criteria
mentioned above.

Process 500 asks the querier to confirm processing the
query, cancel, or postpone query-processing (step 570). Con-
firmation of processing can be based on the values optimized
upon, for example but not limited to, correctness, time to
process, probability of termination (some other maybe
included), and size of the query results.

Oncethe query is processed, process 500 returns the results
(step 580). Process 500 terminates thereafter.

Thus, illustrative embodiments of the present invention
provide a computer implemented method, computer system,
and computer program product for performing a query on a
relational database. When a query is received, a correspond-
ing complexity class is determined for the query. The query is
routed to a corresponding query processor based on the cor-
responding complexity class determined for the submitted
query. The query is executed on the corresponding query
processor according to a determined execution plan.

The descriptions of the various embodiments ofthe present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiment. The
terminology used herein was chosen to explain best the prin-
ciples of the embodiment, the practical application or techni-
cal improvement over technologies found in the marketplace,
orto enable others of ordinary skill in the art to understand the
embodiments disclosed here.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible

US 9,424,311 B2

15

implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block might occur out of the order
noted in the figures. For example, two blocks shown in suc-
cession may, in fact, be executed substantially concurrently,
or the blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

What is claimed is:

1. A computer implemented method for performing a query
on a relational database, the computer implemented method
comprising:

receiving, by a computer, a query;

determining, by the computer, a corresponding complexity

class of a plurality of complexity classes for the query by
determining a static complexity class for the query and
by determining dynamic complexity classes for the
query;

decomposing the query into sub queries;

devising a query execution plan using the dynamic com-

plexity classes determined and algorithms available to a
plurality of query processors;

routing, by the computer, the decomposed query to corre-

sponding query processors of the plurality of query pro-
cessors based on the corresponding complexity class
determined for the received query; and

executing, by the computer, the decomposed query on the

corresponding query processors according to a devised
execution plan.

2. The computer implemented method of claim 1, wherein
devising the query execution plan further comprises:

estimating complexity of the sub queries and the query

based on updates to a complexity database and types of
graphs in a database tree, wherein the types of graphs are
selected from a group comprising trees, directed acyclic
graphs, cyclic graphs, planar graphs, and combinations
thereof.

3. The computer implemented method of claim 1, wherein

the plurality of complexity classes include a polynomial

time complexity class, a nondeterministic polynomial
time complexity class, a nondeterministic polynomial
time hard complexity class, and a nondeterministic
exponential time complexity class.

4. The computer implemented method of claim 1, wherein

the dynamic query complexity classes are determined from

alterations of a complexity of the query based on other
queries processed earlier, other queries being processed
concurrently or ahead of the query, and other queries to
be processed concurrently or ahead of the query.

5. The computer implemented method of claim 1, further
comprising:

storing the query, the static complexity class, and the

dynamic complexity classes in a database.

6. A non-transitory computer readable storage medium
having computer usable program code encoded thereon for
performing a query on a relational database, the computer
usable program code comprising:

5

10

15

20

25

30

35

40

45

50

55

60

65

16

computer usable program code for receiving a query;

computer usable program code for determining a corre-

sponding complexity class of a plurality of complexity
classes for the query, by determining a static complexity
class for the query and by determining dynamic com-
plexity classes for the query;

computer usable program code for decomposing the query

into sub queries;

computer usable program code for devising a query execu-

tion plan using the dynamic complexity classes deter-
mined and algorithms available to a plurality of query
processors;
computer usable program code for routing the decomposed
query to corresponding query processors of the plurality
of query processors based on the corresponding com-
plexity class determined for the received query; and

computer usable program code for executing the decom-
posed query on the corresponding query processors
according to a devised execution plan.

7. The non-transitory computer readable storage medium
of claim 6, wherein the computer usable program code for
devising the query execution plan further comprises:

computer usable program code for estimating complexity

of the sub queries and the query based on updates to a
complexity database and types of graphs in a database
tree, wherein the types of graphs are selected from a
group comprising trees, directed acyclic graphs, cyclic
graphs, planar graphs, and combinations thereof.

8. The non-transitory computer readable storage medium
of claim 6, wherein the

plurality of complexity classes include a polynomial time

complexity class, a nondeterministic polynomial time
complexity class, a nondeterministic polynomial time
hard complexity class, and a nondeterministic exponen-
tial time complexity class.

9. The non-transitory computer readable storage medium
of claim 6, wherein the

dynamic query complexity classes are determined from

alterations of a complexity of the query based on other
queries processed earlier, other queries being processed
concurrently or ahead of the query, and other queries to
be processed concurrently or ahead of the query.

10. The non-transitory computer readable storage medium
of claim 6, further comprising:

computer readable program code for storing the query, the

static complexity class, and the dynamic complexity
classes in a database.

11. A computer system comprising:

a memory having computer readable program code stored

thereon for performing a query on a relational database;

a bus connecting the memory to a processor; and

a processor, wherein the processor executes the computer

readable program code:

to receive a query;

to determine a corresponding complexity class of a plu-
rality of complexity classes for the query by determin-
ing a static complexity class for the query and by
determining dynamic complexity classes for the
query;

to decompose the query into sub queries;

to devise a query execution plan using the dynamic
complexity classes determined and algorithms avail-
able to a plurality of query processors;

to route the decomposed query to corresponding query
processors of the plurality of query processors based
on the corresponding complexity class determined for
the received query; and

US 9,424,311 B2

17

to execute the decomposed query on the corresponding
query processors according to a devised execution
plan.

12. The computer system of claim 11, wherein the proces-
sor executing the computer readable program code to devise
the query execution plan further comprises the processor
executing the computer readable program code:

to estimate complexity of the sub queries and the query

based on updates to a complexity database and types of
graphs in a database tree, wherein the types of graphs are
selected from a group comprising trees, directed acyclic
graphs, cyclic graphs, planar graphs, and combinations
thereof.

13. The computer system of claim 11, wherein the

plurality of complexity classes include a polynomial time

complexity class, a nondeterministic polynomial time
complexity class, a nondeterministic polynomial time
hard complexity class, and a nondeterministic exponen-
tial time complexity class.

14. The computer system of claim 11, wherein the

dynamic query complexity classes are determined from

alterations of complexity of the query based on other
queries processed earlier, other queries being processed
concurrently or ahead of the query, and other queries to
be processed concurrently or ahead of the query.

15. The computer system of claim 11, wherein the proces-
sor further executes the computer readable program code:

to store the query, the static complexity class, and the

dynamic complexity classes in a database.

#* #* #* #* #*

10

15

20

25

30

18

